
Project Zonnon:
The Language, The Compiler,

The Environment

Eugene Zouev

Bergen Language Design Laboratory
Bergen University

May 19, 2010

Outline
Project History

Zonnon Language

Zonnon Compiler

CCI & Zonnon Compilation Model

Integration into Visual Studio

Zonnon Builder

Link, Conclusion, Acknowledgements
2

Project History
1999, Oberon.NET

Projects 7 & 7+ launched by Microsoft
Research

2001, Active Oberon
ETH Zürich; the notion of active object

2004, Active C#
ETH Zürich; communication mechanism
based on syntax-oriented protocols

2004-2006, Zonnon
3

Zonnon Highlights
A member of the family of Pascal,Modula-2,

Oberon: compact, easy to learn and use

Supports modularity (with importing units
and exporting unit members)

Supports object-oriented approach based
on definition/implementation paradigm
and refinement of definitions

Supports concurrency based on the notion
of active objects and syntax-based
communication protocols

4

Zonnon Program Architecture 1

Module Definition

Object Implementation

5

Implementation

Definition

Object

Module

Zonnon Program Architecture 1

5

Unified unit of abstraction:
- represents abstract interface
- refines another definition

Program managed actor/resource:
- implements definitions

System managed object:
- encapsulates resources
- implements definitions
- aggregates implementations

- def.implementation of a definition
- standalone aggregation unit

- aggregates implementations
- specifies concurrent behaviour

Zonnon Program Architecture 2
Definition D1

Definition D11
(refines D1)

Object A
(implements D1 & D11

without reusing def implem)

Implementation D11
(default for Def D11)

6

Zonnon Program Architecture 2
Definition D1 Definition D2

Definition D11
(refines D1)

Object A
(implements D1 & D11

without reusing def implem)

Object B
(implements D2, reuses default

implem for D3, and aggregates I)

Implementation I
(standalone resource)

Definition D3

Implementation D3
(default for Def D3)

Implementation D11
(default for Def D11)

6

Definitions
(* Common interface for all kind of vehicles *)
definition Vehicle;

var { get } Speed : integer; (* read-only *)
procedure SpeedUp (d:integer);
procedure SlowDown (d:integer);

end Vehicle.

definition Truck refines Vehicle;
(* Inherits interface from Vehicle *)
const SpeedLimit = 90;

end Truck.

7

Definition & Implementation
(* Common interface for random numbers generators *)
definition Random;

var { get } Next : integer; (* read-only *)
procedure Flush; (* reset *)

end Random.

(* A default implementation of the generator *)
implementation Random;

var { private } z : real;
procedure { public, get } Next : integer;

const a = 16807; m = 2147483647; q = m div a; r = m mod a;
var g : integer;

begin g := a*(z mod q) – r*(z div q);
if g>0 then z := g else z := g+m end;
return z*(1.0/m)

end Next;
procedure Flush; begin z := 3.1459 end Flush;

begin Flush
end Random. 8

Definitions & Objects
(* Common interface for the random numbers generator *)
definition Random;

var { get } Next : integer; (* read-only *)
procedure Flush; (* reset *)

end Random.

(* A custom implementation of the generator *)
object myRandom implements Random;

(* Procedure Next is reused from default implementation *)

(* Procedure Flush is customized *)
procedure Flush implements Random.Flush;
begin

z := 2.7189
end Flush;

begin
Flush

end myRandom.

9

Modules & Objects
module Test;

import Random, (* both definition and implem are imported *)
myRandom;

var x : object { Random };
(* x’s actual type is either Random or any type

implementing Random *)

object R2 implements Random;
(* Another implementation of Random definition *)

. . .
end R2;

begin
x := new Random;
. . .

x := new myRandom;
. . .

x := new R2;
end Test. 10

Activity Example:
A Pipeline with Active Objects 1

Taken from a talkof JG, BK, and DL

Get

Put Get
Put

Buffer Activity

AWAIT

Stage Stage
AWAIT

Active Object Active Object

System-wide activity is scheduled by evaluating

the set of all AWAIT preconditions 11

Activity Example:
A Pipeline with Active Objects 2

Taken from a talkof JG, BK, and DL

object Stage (next: Stage);
var { private } n, in, out: integer;

buf: array N of object; (*used as a circular buffer*)

begin (*initialise this new object instance*)
n := 0; in := 0; out := 0; new Processing;

end Stage;

procedure { private } Get (var x: object);
begin { locked } (*mutual exclusion*)

await (n # 0); (* precondition to continue*)
dec(n); x := buf[out]; out := (out+1) mod N

end Get;
procedure { public } Put (x: object);
begin { locked } await (n # N); (*mutual exclusion*)

inc(n); buf[in] := x; in := (in+1) mod N
end Put;

activity Processing; var x: OBJECT;
begin loop Get(x); (*process x;*) next.Put(x) end
end Processing;

each activity
has a separate

thread

Wait whilst
the buffer
is empty

Wait whilst
the buffer

is full

12

Activities & Protocols
definition D;

protocol P = (a, b, c); (* declaration of a protocol *)
end D.

object O; import D;
activity A implements D.P; (* declaration of an activity *)

begin ... return u, v, w; (* activity returns tokens *) …
x, y := await; (* activity receives tokens *)

end A;
var p: P; (* declaration of an activity variable *)

begin
p := new A; (* create an activity *)

(* Continued dialog between caller and callee *)
p(x, y); (* caller sends tokens x, y to activity p*)
u, v, w := await p; (* caller receives tokens from p *)
if u = P.a then ... end; (* using the token received from p *)
r := p(s, t); (* same as a(s, t); r := await p *)
await p; (* wait for activity to terminate *)

end O. 13

Syntax-Based Protocols
definition Fighter;

(* See full example in the Zonnon Language Report *)
(* The protocol is used to create Fighter.Karate activities *)
protocol (* syntax of the dialog*)

{ fight = { attack ({ defense attack } |
RUNAWAY [?CHASE] |
KO | fight) }.

attack = ATTACK strike.
defense = DEFENSE strike.
strike = bodypart [strength].
bodypart = LEG | NECK | HEAD.
strength = integer. }

(*enumeration of the dialog elements to be exchanged*)
Karate = (RUNAWAY, CHASE, KO, ATTACK, DEFENSE,

LEG, NECK, HEAD);
end Fighter.

14

Outline
Project History

Zonnon Language

Zonnon Compiler

CCI & Zonnon Compilation Model

Integration into Visual Studio

Zonnon Builder

Link, Conclusion, Acknowledgements
15

Zonnon Compiler
Compiler front-end is written in C# using

conventional compilation techniques
(recursive descent parser with full
semantic control)

Compiler uses CCI framework as a code
generation utility and integration platform

Three versions of the compiler are
implemented (all share the single core):
- command-line compiler
- compiler integrated into Visual Studio
- compiler integrated into Zonnon Builder

16

Zonnon Compiler in Visual Studio

Just Demo:
Binary Search

17

Outline
Project History

Zonnon Language

Zonnon Compiler

CCI & Zonnon Compilation Model

Integration into Visual Studio

Zonnon Builder

Link, Conclusion, Acknowledgements
18

Common Compiler Infrastructure
Universal framework for developing compilers for

.NET and integrating them into Visual Studio

Supports CLR-oriented semantic analysis, program
tree building and transformation, name resolution,

error processing and IL+MD generation; doesn’t
support lexical & syntax analyses

Can also be used as a faster alternative to
System.Reflection library

Doesn’t require COM programming: C# only

Implemented in Microsoft; is used in Cω & Spec#
compilers (as well as in their predecessors)

19

CCI Architecture

Integration

Service

Semantic
Represen

tation

Assembly
Generation

Service

Visual Studio .NET

-
Service

Visual Studio .NET

Compiler Front End Compiler Back End

20

CCI Major Parts
Intermediate Representation (IR) –

A rich hierarchy of C# classes
representing most common and typical
notions of modern programming
languages. System.Compiler.dll

Transformers (“Visitors”) –
A set of classes performing consecutive
transformations IR ⇒ MSIL

System.Compiler.Framework.dll

Integration Service –
Variety of classes and methods providing
integration to Visual Studio environment
(additional functionality required for
editing, debugging, background
compilation, project management etc.) 21

CCI Way of Use:
Common Principles

All CCI services are represented as classes.
In order to make use of them the compiler writer
should define classes derived from CCI ones.
(The same approach is taken for Scanner, Parser,
IR, Transformers, and for Integration Service)

Derived classes should implement some abstract or
virtual methods declared in the base classes
(they compose a “unified interface” with the
environment)

Derived classes may (and typically do) implement
some language-specific functionality.

22

CCI Way of Use: Parser Example

using System.Compiler;

namespace ZLanguageCompiler
{

public sealed class ZParser : System.Compiler.Parser
{

public override ... ParseCompilationUnit(...)
{

. . .
}

private ... ParseZModule(...)
{

. . .
}

}
}

Prototype parser:
abstract class from CCI

Parser’s “unified interface”:
implementation of the

interface between
Z compiler and environmentZ parser’s own logic

C
al

l

23

CCI Compilation Model 1

Source Language Part:
Language specific

IR
(AST)

SourceSource

Scanner
&

Parser
Visitors

CCI Part:
Common to all languages

Imported
Assemblies
Imported

Assemblies

MSIL+MD Output
Assembly
Output

Assembly

IL/MD
Reader

IL/MD
Writer

24

CCI Compilation Model 2
CCI IR Hierarchy CCI Base Transformers

MSIL+MD

Visitor 1

Visitor 2
…

Visitor N

25

CCI Compilation Model 2
CCI IR Hierarchy CCI Base Transformers

MSIL+MD

Visitor 1

Visitor 2
…

Visitor N

X Language IR Hierarchy X Language Transformers

Visitor 1

Visitor 2

Visitor M
…

Visitor 3+
MSIL+MD

25

Ada exit statement: exit when <Condition>;

CCI Compilation Model 3: Example
Extending the IR Hierarchy

26

Ada exit statement: exit when <Condition>;

public class AdaExit : Exit {
Expression condition;

}

1 Extend existing Exit node

public class AdaExit : Statement {
Expression condition;

}

2 Add new statement to the hierarchy

3 Use semantic equivalent from the existing hierarchy
Represent Exit as an instance of class If with
condition == <Condition>,
falseBlock == null, and
trueBlock == Block with one element of type Exit.

CCI Compilation Model 3: Example

public class If : Statement
{

Expression condition;
Block falseBlock;
Block trueBlock;

}

Extending the IR Hierarchy

26

CCI Compilation Model 4: Example

using System.Compiler;

namespace AdaLanguageCompiler
{

public sealed class Looker : System.Compiler.Looker
{
public override Node Visit (Node node)
{
switch (node.NodeType) {
case NodeType.AdaExit:

return this.VisitAdaExit(node);
default:

return base.Visit(node);
}

}
private If VisitAdaExit (AdaExit node)
{ /* Transform AdaExit node to If node */ }

}
}

Extending a Visitor Prototype visitor:
base CCI class

“Dispatcher” method

Additional semantic
functionality

Call to prototype visitor

27

Zonnon Compilation Model 1
Zonnon

IR Hierarchy
(A Subset of)

CCI IR Hierarchy

Zonnon
Transformers

Visitor K

Visitor N

… MSIL+MD

(A Subset of) CCI Base
Transformers

28

Zonnon Compilation Model 2
Example: Zonnon Tree & Transformers

public sealed class DEFINITION_DECL : UNIT_DECL
{

// Constructor
public DEFINITION_DECL (Identifier name) : base(name) { }
// Structure
public DECLARATION_LIST locals; // members, procedure headings
public UNIT_DECL base_definition;
public UNIT_DECL default_implementation;

// Fills the structure after parsing the source
public static DEFINITION_DECL create

(IDENT_LIST name, MODIFIERS modifiers) { }
// Resolves forward declarations
public override NODE resolve () { ... }
// Checks semantic correctness
public override bool validate () { ... }
// Generates CCI node(s)
public override Node convert () { ... }

}

Zonnon
Transformers

convert transformer
encapsulates mappings

Zonnon->CLR 29

Zonnon Compilation Model 3

Zonnon
Tree

SourceSource MSIL+MD
CCI
Tree

Why two trees:

• Reflect the conceptual gap between Zonnon and the CLR

• Zonnon semantic representation is kept independent from
the CCI and the target platform

• Conversion Zonnnon tree -> CCI tree explicitly implements and
encapsulates mappings from the Zonnon language model
to the CLR 30

Zonnon Compilation Model 4
Some Mappings Zonnon->CLR

definition D;
var x : T;
const k = 10;
type e = (a,b,c);
procedure p (y : T);

end d.

interface D {
T x { get; set; }
// Nothing
// Nothing
void p (T y);

}

implementation D;
var x, y : T;
procedure p (y : T) implements D.p;
begin

...x...
...k...
...e...

end p;
end d.

public class D_implem : D {
enum e { a, b, c };
T x, y; // x hides D’s x
void p (T y)
{

...x... // “native” x

...k... // D_default.k

...e... // D_default.e
}

}
31

Zonnon Compilation Model 5
Some Mappings Zonnon->CLR
object O implements d;
procedure p (y : T) implements d.p;
begin

...x...
end p;

end O.

public sealed class O : D, D_implem // Option 1
{

public override void p (T y) { // hides D_implem’s p()
...x...

}
}
public sealed class O : D { // Option 2

private D_implem mixed;
public override void p (T y) {

...mixed.x...
}

} 32

Outline
Project History

Zonnon Language

Zonnon Compiler

CCI & Zonnon Compilation Model

Integration into Visual Studio

Zonnon Builder

Link, Conclusion, Acknowledgements
33

Compiler Integration:
Traditional Approach

Lexical
Analysis

Syntax &
Semantic
Analysis

Code
Genera-

tion
Sequence
of Tokens

Program
Tree

Source
Code

Diagnostic Messages

Compiler Start Up

Compiler End Up

File with Object Code

Compiler

Object
Code

Source File Name

Compilation Params

Environment

Compiler as a “Black
Box” Program 34

What Does Integration Assume? 1
Features That Should be Supported
by a Compiler

Visual Studio Components

Project Manager

Text Editor

Semantic Support
(“Intellisense”)

Debugger

• Syntax Highlighting
• Automatic text formatting
• Smart text browsing { }
• Error checking while typing
• Tooltip-like diagnostics & info
• Outlining (collapsing parts

of the source);
• Type member lists for classes

and variables of class types
• Lists of overloaded methods
• Lists of method parameters
• Expression evaluation
• Conditional breakpoints

• Language sources identification

35

What Does Integration Assume? 2

Example of “Intellisense” Feature

36

Compiler Integration: CCI Approach

TokenTokenDocument

Lexical
Analysis

Syntax &
Semantic
Analysis

Code
Genera-

tion

Source Code

Compiler

Source Context

Environment

Token

Token Attrs

Token Context

Program Tree Object Code
(Assembly)

Compiler as a Collection
of Resources 37

Compiler Integration: CCI Approach

Lexical
Analysis

Syntax &
Semantic
Analysis

Code
Genera-

tion

Environment

Document

Source Code

Source Context

TokenTokenToken

Token Attributes

Token Context

Program Tree
Object Code
(Assembly)

Source Text
Editor DebuggerProject

Manager
“Intellisense”

etc

Compiler
as a Set

of Objects

38

Outline
Project History

Zonnon Language

Zonnon Compiler

CCI & Zonnon Compilation Model

Integration into Visual Studio

Zonnon Builder

Link, Conclusion, Acknowledgements
39

Zonnon Builder

A standalone, easy-to-use integrated development
environment: convenient for beginners
and looks familiar to Pascal programmers

A simple and light-weight alternative to Visual Studio

Supports a typical development cycle comprising
source code editing, compiling, execution, testing,
debugging, project management, file versioning

Supports a simplified development cycle where
a single program file is being developed, compiled,
debugged and run

40

Zonnon Builder

Just Demo:
Chess Notebook Program

41

Zonnon Web Page

www.zonnon.ethz.ch

Zonnon program samples
(including Chess Notebook),

Zonnon Test Suite (1000+ test cases),
Zonnon Language Report,
Related Papers and Talk Slides,
Zonnon Compiler Distribution

(updated almost every Monday)

42

http://www.zonnon.ethz.ch/

Conclusion
Zonnon is a new programming language which

combines conventional notation and classic
modularity with modern and powerful
paradigms like object orientation and
language-level concurrency

Zonnon can be used together with other .NET
languages within the same environment
(Visual Studio)
To the best of our knowledge, the Zonnon compiler is the first compiler
developed outside of Microsoft that is fully integrated into Visual Studio

Zonnon is used for teaching minor students
programming (as the first language) in Nizhny
Novgorod university, Russia 43

People Involved
J.Gutknecht, ETH Zürich

Primary Language Author
B.Kirk, Robinson Associates
D.Lightfoot, Oxford Brookes University

Zonnon Language Report
H.Venter, Microsoft

Common Compiler Infrastructure
E.Zouev, ETH Zürich

Zonnon Compiler, Integration into VS
V.Romanov, Moscow State University

Zonnon Test Suite, Zonnon Builder, Chess NB
A.Freed, NASA

First “Industrial” Zonnon User
V.Gergel, R.Mitin, NN State University, Russia

An Introductory Course in Programming
based on Zonnon; Zonnon Program Samples 44

Questions?
Suggestions?
Critique?

45

