
Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References

PARALLEL AND CONCURRENT PROGRAMMING IN HASKELL

AN OVERVIEW

Eva Burrows

BLDL-Talks
Department of Informatics, University of Bergen, Norway

March 02, 2010



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Language Features History Note Concurrency and Parallelism

WHAT IS HASKELL LIKE?

I purely functional - no side effects

I higher-order

I strongly typed, to the very extent

I general purpose

I good support for domain spesific languages

I LAZY!



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Language Features History Note Concurrency and Parallelism

WHY SO SUCCESSFUL?

I on the language front:
I a committee of 15 people started to work seriously and enthusiastically on it (1990 -

fisrt specification)
I functional by default, imperativ on demand without ruining its “purity” (monads)
I “the world’s finest imperative programming language”
I general purpose
I versatile: DSL, hardware design, etc
I expressive power and elegancy

I on the implementation front:
I fifths, latest standard: Haskell 98, with subsequent implementations, compilers. Still

in use (Haskell-prime - the new revised language to come)
I open source
I well documented
I well supported
I raw computer power growth: expressiveness cost less
I wiki website
I scalable support fot concurrency and parallelism (past few years)

I impact:
I its influence on other languages (ex. Python, C#, etc) made it more visible
I evergrowing user group: academia first (lazyness, teaching language), later industry

(Bluespec, ABN AMRO, and others)



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Language Features History Note Concurrency and Parallelism

EXPRESSIVE POWER

HASKELL CODE:

quicksort    :: [a] ­> [a]
quicksort [] = []
 quicksort (x:xs) = quicksort small ++ (x : quicksort large)
   where small = [y | y <­ xs, y <= x]
         large = [y | y <­ xs, y > x]

C CODE:

void qsort(int a[], int lo, int hi) {
{
  int h, l, p, t;
  if (lo < hi) {
    l = lo;
    h = hi;
    p = a[hi];
    do {
      while ((l < h) && (a[l] <= p)) 
          l = l+1;
      while ((h > l) && (a[h] >= p))
          h = h­1;
      if (l < h) {
          t = a[l];
          a[l] = a[h];
          a[h] = t;
      }
    } while (l < h);
    a[hi] = a[l];
    a[l] = p;
    qsort( a, lo, l­1 );
    qsort( a, l+1, hi );
  }
}



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Language Features History Note Concurrency and Parallelism

ARE FUNCTIONAL PROGRAMMING LANGUAGES PARALLEL?

I there is a problem here. . .
I they state what to compute, in a pure way, but do not tell how to compute:

I partial ordering on program execution
I mapping a program onto a processor
I distributing data

unless there exists a coordination language to specify the how



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Language Features History Note Concurrency and Parallelism

STEPS TOWARDS A CONCURRENT AND A DATA PARALLEL HASKELL

I 1991: Paul Hudak proposes an annotation based meta-language to:
I control evaluation order of expressions
I map expressions to certain processors
I parallelize lists

I 1996: Concurrent Haskell: language extension (4 primitives) to create explicit
lightweight Haskell threads and manage communication (ex.: forkIO, MVars)

I 1998: Algorithm+Strategies = Parallelism introduces sparks and evaluation
strategies (semi explicit parallelism)

I 2005: a new Haskell concurrency model based on Transactional Memories: they
introduce constructs like blocking, sequential composition and choice over the
traditional TM model

I 2006: Data Parallel Haskell: implementing nested data parallelism

I since 2001: distributed Haskell: conservative extension of both Concurrent
Haskell and GpH

I all these well-supported and well-documented



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

SPARKS AND EVALUATION STRATEGIES

I strategy: annotation on code to hint where parallelism is useful, or to force that
an expression should be evaluated first wrt to another

I sparks: result of parallel strategies, that can be turned into threads by the
runtime system

I no restriction on what you can annotate

I deterministic without explicit threads, locks, or communication

I ThreadsScope profiler: allows to debug the parallel performance of Haskell
programs

I two evalution strategies:
I par:: a -> b -> b
I pseq:: a -> b -> b

I ex.: f ’par’ e ’pseq’ f+e

I implemented as functions in the Control.Parallel module



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

THREAD PROGRAMMING IN SHARED MEMORY

I comes as a collection of library functions, not as an extra syntax

I idea: user creates explicit threads (forkIO) that can communicate and
synchronize via “mutable variables”, boxes – like shared memory, or channels
like message passing

I threads are then run concurrently by the Haskell runtime system

I non deterministic scheduling of the threads

I they are very cheap: couple of hundred bytes in memory, it is reasonable for a
program to spawn thousands of them



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

SIMPLE EXAMPLE

Definition of the thread issuing function:

forkIO :: IO a -> IO ThreadId

Issuing a concrete thread:

main :: IO ()
main = do { forkIO (hPutStr stdout "Hello")

; hPutStr stdout " world\n" }

Communicating via MVar - a box:

communicate =
do {m <- newEmptyMVar

; forkIO (
do {

v <- takeMVar m
; putStrLn ("received " ++ show v)})

; putStrLn "sending"
; putMVar m "wake up!"}



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

COMMUNICATING VIA STM IS SAFER

I MVar may lead to deadlocks: when a thread is waiting for a value from an other
thread that will never appear

I or may lead to race conditions due to forgotten locks

I MVar – not composable: cannot glue correct subproblems into a big one

I lock-free synchronization via STM

I higher level than MVar, safer, composable, though slower



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

BASIC IDEA OF SOFTWARE TRANSACTIONAL MEMORY

I a concurrency mechanism borrowed from database transactions for controlling
shared memory access by concurrent threads

I a transaction is a block of code with memory reads and writes executed by a
single thread with the properties: atomic, isolated:

I atomic: either all operations goes forward, or - if one fails - then all fails
I isolated: intermediate states inside a transaction are not visible to other threads; the

overall effect of the whole transaction becomes visible to all other threads at once;
the execution of a block is unaffected by other threads

I has an optimistic execution model:
I assuming no conflicts, transactions inside atomic blocks execute in a local thread

transaction log, not actual memory
I if the execution fails at some point, it rolls back everything, and eventually rerun the

whole transaction,
I in the end, the runtime system validates the log against real memory. In case of

conflicts, rolls back everything, and rerun the transaction. If validation succeeds, the
effect of the transaction is committed to real memory.

I requires special control of side effects: things that cannot be undone, cannot be part
of an atomic block



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

HASKELL’S CONTRIBUTION TO THIS IDEA

I composable transactions: by introducing some primitives

I wrap two operations into one - a new atomic transaction

I blocking transactions with retry: if a condition fails, abandon the current
transaction and start it again when the transaction variable is updated (as an
effect of an other thread)

I orelse: composition of alternatives. Tries two alternative paths, if both fail, rerun
the whole transaction, when one of the transaction variables is updated (again
as an effect of an other thread)

I the runtime system is responsable for checking the state of the transaction
variables using the thread logs. When a condition variables have been updated,
reruns the transaction.



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Semi-explicit Parallelism Explicit Threads Software Transactional Memory

SIMPLE EXAMPLE FOR A BANK TRANSACTION

The type of STM:

atomically :: STM a -> IO a

Defining a money transfer from one account into an other:

type Account = TVar Int

transfer :: Account -> Account -> Int -> IO ()
transfer acc1 acc2 amount

= atomically (do { deposit acc1 amount
; withdraw acc2 amount })

withdraw :: Account -> Int -> STM ()
withdraw acc amount

= do { bal <- readTVar acc
; if amount > bal then retry

else writeTVar acc (bal - amount) }



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Overview Flat Data Parallelism Nested Data Parallelism

CONCURRENCY VS. PARALLELISM (IN HASKELL)

I concurrency is a software structuring technique: to model computations as
hypothetical independent activities (each having its own PC), that communicate
and synchronise

I a parallel program looks for performance: by exploiting the potential of a real
parallel computing resource:

I task parallelism: concurrent execution of threads created for independent tasks
I data parallelism: do the same thing in parallel over a large amount of data in parallel

(no explicit threads, clear cost model, good locality)



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Overview Flat Data Parallelism Nested Data Parallelism

INTRODUCING EXTRA SYNTAX FOR DATA PARALLELISM

I comes as part of Data.Array.Parallel module

I fundamental data structure is parallel array: [:a:]

I with associated parallel combinators:
ex.: mapP :: (a -> b) -> [:a:] -> [:b:], etc.

I with synstactic sugar: parallel array comprehension

I it is like a large array programming, with a big for loop

I it is too “flat”, so they say

I nested data parallelism is more intresting. . .



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Overview Flat Data Parallelism Nested Data Parallelism

NESTED DATA PARALLELISM

I 1990: Guy Blelloch described nested data-parallel programming:

I gives more flexibility to the programmer by opening a wider range of
applications: divide and conquer, sparse matrix computations, graph algorithms

I harder to implement it: following Blelloch’s idea, it is based on a systematic
flattening transformation of any nested data parallel program into a flat one.



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

A TASTE OF MONADS

I motivated by simple I/O actions: since if no side effects, no I/O - this was
embarassing

I monads are structures to supplement pure computations with features like state,
common environment or I/O

I they simulate side effects



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

MONADIC I/O

I type IO a = World -> (a, World).
A value of type IO a is an I/O action.

I ex.1: getChar :: IO Char

I ex.2: putChar :: Char -> IO ()



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

MONADIC I/O CONT.

I combining actions by sequential composition:
(» =) :: IO a -> (a -> IO b) -> IO b

I complete Haskell program defines a single big I/O action, called main, of type
IO ()

main :: IO ()
main = getChar >>= \c -> putChar c

I there are defined several “gluing” combinators, and other mechanism to “fish out”
the result of an action in a variable



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

MONADIC COMPUTATIONS SIMPLE: DO

getTwoChars :: IO (Char,Char)
getTwoChars = do { c1 <- getChar ;

c2 <- getChar ;
return (c1,c2)

}

I where return is also a combinator: return :: a -> IO a.
It has no side effects.



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

OTHER USES

I imperative control structures can also be implemented as actions:

repeatN :: Int -> IO a -> IO ()
repeatN 0 a = return ()
repeatN n a = a >> repeatN (n-1) a

I references: to model mutable variables

data IORef a -- An abstract type
newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

A value of type IORef a is a reference to a mutable cell holding a value of type
a



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References Monads

SO WHAT IS A MONAD?

I An abstract data type with:
I a type constructor M
I two functions:

return :: ∀α.α →M α

>>==:: ∀αβ .M α → (α →M β)→M β

I satisfying certain algebraic laws



Introduction Concurrent Haskell Data Parallel Haskell Miscellenous References

MAIN REFERENCES

I Beautiful Concurrency, Peyton Jones, O’Reilly 2007

I Harnessing the Multicores: Nested Data Parallelism in Haskell, Peyton Jones,
Leshchinkskiy, Keller, Chakravarty, 2008.

I A Tutorial on Parallel and Concurrent Programming in Haskell, Peyton Jones and
Singh. 2008

I Real World Haskell, O’Sullivan, Goerzon, Stewart. O’Reilly 2008

I A History of Haskell: being lazy with class, Hudak, Hughes, Peyton Jones,
Wadler, The Third ACM SIGPLAN History of Programming Languages
Conference, 2007.

I Composable Memory Transactions, Harris, Marlow, Peyton Jones, Herlihy.
PPoPP’05

I A Gentle Introduction to Haskell 98, Hudak, Peterson, Fasel, 1999

I Tackling the Awkward Squad: monadic input/output, concurrency, exceptions,
and foreign-language calls in Haskell, Peyton Jones, 2009


	Introduction
	Language Features
	Historical Overiew
	A Note on Its Expressive Power
	Concurrency and Parallelism

	Concurrency
	Semi-explicit Parallelism
	Explicit Threads
	Software Transactional Memory

	Data Parallel Haskell
	Overview
	Flat Data Parallelism
	Nested Data Parallelism

	Miscellenous
	Monads

	References

