Trends and Challenges in Multicore Programming

Eva Burrows
Bergen Language Design Laboratory (BLDL)
Department of Informatics, University of Bergen

Bergen, March 17 , 2010

Outline

The Roadmap of Multicores
The Challenge of Parallel Thinking
Multicore Languages and Compilers

Summary

A D
U O(rId

ICOres

The Roadmap of Mult

At the beginnings...

1965:
‘the number of transistors
placed inexpensively on
integrated circuit will double
approximately every two years *“

Gordon E. Moore * |nnocent observation led to
Co-founder and Chairman Emeritus of Intel an industry goal: Moore's LaW

A D
U O(rId

Moore's Law illustrated on Intel chips

10,000,000
Dual-Core Itanium 2
1,000,000 i
Intel CPU Trends
(sources: Intel, Wikipedia, K. Olukotun)
100,000 [
Pentium 4
10,000 !
1,000
100
10
1 | Transistors (000)
Y ® ° .:;:k Speed (MHz)
WX] A er (W)
@ Perf [Clock (ILP)
0 | |

1970 1975 1980 1985 1990 1995 2000 2005 2010
Drawing: Herb Sutter

Multicore Architectures

A processing system with 2 or more independent cores
iIntegrated on the same chip

Number and type of cores:
— multicore or manycore
— heterogeneous or homogeneous

Memory architecture:
— shared
— distributed
— mixture

Interconnection network

Shared Memory Multicore Architectures

A D
U O(rId

Distributed Memory Multicore Architectures

A D
U O(rId

(Future) Manycore Architectures

The “Babel” of Multicores

icores
erwhelming Multic
Ov

e Corev g,
. wﬂia,/‘,;fme

D (in[e/ D
inte/) [are?&trg,,,e
W{b@
> Extrepe
95 o

Intel's Nehalem Architecture

[)))

e shared memory

« multi-threading

e upto 8 cores

e 2 threads/core

« private L1 and L2 cache
o 24MB shared L3 cache

A D
U O(rId

Sun's Niagara 2 Architecture

o 12pata 1B

Bank 0
L2BO

L2 Data | |
Bank-1.| S =gl | ;‘&_
21 |8 ke ik
mcuo ol

L2 L2 - e

Loen

O TAGO TAG1 TAG5S TAG4
SRR - o e

F
a9
Pl
win
"
o
B _4ﬁ£=¢z;ijﬂi====nﬂ=i-
wi Pe—
walJE | e .
- i | ;-
-
) [

':! L2 Data

Bank 7
L2B6
L2 Data
Bank 6

shared memory
multi-threading

up to 8 cores

4-8 threads/core

4MB shared L2 cache

Cell BE — Heterogeneous Architecture

GEEm—" _ _ _ * 1 PPU for OS and PC
[sxu_J\I[sxu] _sxu][sxu Jii[sxu i sxu Jh i sxu Jji[sxu
‘ s ‘ s ‘rm W ‘rm s ‘rm ‘[Lﬂf * 8 SPE capable of vector
(oo) e w1 e][e] e] e | processing with local store
BRI [TT} » 1 T memory (4GB)
ope | | 1o i * high-performance

interconnection bus

PPU

XU

A D
U O(rId

NVIDIA GPUs with CUDA

G80 Thread Computing Pipeline

® Processors execute computing threads
® Alternative operating mode specifically for computing
[Host |

Thread Execution Manage B
'T'-’]’-""’- m| [f-i-'" "-]-'"'li | (=) (-
| m| (=] (-] | (--] - |
(o])| i]]]| o]l
=]
|

4

P dier| Dy |
Cache

= e s 2 ke
- w wm =

2 =
mm

WED LA, Confidential

Eva Burrows @ Trends and Challenges in Multicore Programming @ http://bldl.ii.uib.no

Field Programmable Gate Arrays (FPGAS)

o
Ste

Programmable
Interconnects

1/0 Blocks
device with a matrix of reconfigurable gate array logic circuitry

when configured works as a hardware implementation of a software
application

user can create task-specific cores that all run like parallel circuits
inside one FPGA chip

A D
U O(rId

The Challenge of Parallel Thinking

A D
U O(rId

“Think Parallel or Perish”

2009:

“... the 'not parallel’ era will
appear to be a very primitive
time in the history of
computers when people
look back in a hundred
years...”

113

.. In less than a decade, a

James Reinders programmer who does not
Chief E list — , . '
Inteﬁs SV;?v%zrs Products Division Think Pafa//e/ f/rSt

will not be a programmer”

o o
= i
- | I . i

o ER

Multicore is a Challenge

Primarily in software development

Performance speed up depends on how good is the
multi-threading of the parallel source code

Parallel code ought to be:

— correct

— efficient

— scalable

— future-proof

Portable code across platforms — major issue

Start to Think Parallel

* what hardware do we have?
— multithreaded system architecture
- GPU
— heterogeneous multicore (ex. Cell BE)
- FPGA
— eftc...

* language: what data structures and operations are supported?

* identify parallelism
— embarrassingly parallel?
— functional decomposition: task parallelism
— data decomposition: data parallelism

TR
SF-apg.
= i T
- | I . i
o i,
Sy
L E

Start to Think Parallel

* what hardware do we have?
— multithreaded system architecture
- GPU
— heterogeneous multicore (ex. Cell BE)
- FPGA
— eftc...

* language: what data structures and operations are supported?

* identify parallelism
— embarrassingly parallel?
— functional decomposition: task parallelism
— data decomposition: data parallelism

TR
SF-apg.
= i T
- | I . i
o i,
Sy
L E

Threading Methods

* Explicit threading (rather low level)
— manually write all code responsible for managing threads
that interface to a specific library
* Library-based — best for functional decomposition
— user creates and synchronize threads explicitly
— Ex. Pthreads

* Compiler-based — best for data parallelization
— user annotates code with pragmas
— Ex. OpenMP, TBB

Golden True: Use Abstraction Where Possible

Future-proof applications

Express parallelism, without thinking much about threads/core
management

— Libraries, OpenMP, Intel TBB — good examples for this

Best to avoid raw native threads, like Pthreads

— Native threads and MPI are like the assembly language of
parallelism

Think in tasks, not threads

Load balancing

* keep all threads busy all the time

time

A D
U O(rId

Fine- or Coarse-grain — Which is Best?

* Depends on algorithm and hardware

aw)

* Fine-grain: good for load-balancing,
but too much communication
overhead

* (Coarse-grain: more opportunity to
increase performance, but not so
good for load-balancing

aw)

¥

[communication
[computation

A D
U O(rId

Lock-based Synchronization

. IS error-prone

. they may cause blocking:

— deadlocks: threads are waiting for each other to release a
resource

— livelocks: threads continuously change their state but not
doing any useful work.

. Lock-free programming: e.g. transactional memory

Exercise: Parallelizing A Baking Process

* We are making a birthday cake:
* Mix ingredients: 20 minutes
* Bake: 30 minutes

* Can we parallelize it?
* How many cooks? | i T
* Each cook has his own spoon? ™Se¢ ™S¢ ™o
* How if | make cup-cakes?

A Note on Performance Gain

* Amdahl's Law: the pessimistic

— A program's serial portion is a practical upper bound on
the performance of its parallel portion

— Baking a cake:

Number of cooks Time Speedup

1

30 + 20 =50 1.0x

— Qverall parallel performance is still limited by the baking

time

* So are massively parallel systems hopeless... ?

A D
U O(rId

A Second Note on Performance Gain

* (Gustafson's Law: scaled speed-up measurement — the optimistic
— What if we want to bake 7100 cakes?

Number of cooks Time Speedup
1 30 + 20100 = 2030 1.0x

— certain problems have increased performance by increasing the
problem size

— the problem size scales with the number of processors

— speed-up should be measured by scaling the problem size to
the number of processors, not fixing the problem size

A D
U O(rId

Parallelizing is Difficult

Writing correct, efficient parallel programs has always been
challenging (e.g. HPC)

This applies to multicore programming too

Higher abstraction levels help

“We cannot start from scratch whenever a new multicore
hardware turns up”

Ongoing Research

* Goal: to lift the abstraction level even higher
— To free the user from low level hardware details
— To bridge the gap between programming different types of
multicores and/or HPC facilities
* Many high-level programming models have been proposed:
— Functional approaches: Haskell, SAC, Crystal, etc

— Data parallel languages: NESL, DPH, SAC, Fortran95, Sisal
etc.

— Implicit parallelism: HPF, Id, NESL, Sisal, ZPL
— PGAS model: UPC, Co-Array Fortran, Fortress, Chapel, X10
— efc.

T T
|'_, (25 ’%
o ./
o ERA

Languages and Compilers for Multicores

Threading
Building Blocks

A D
U O(rId

Intel's for Multicore CPUs

Intel Compilers support OpenMP

Intel launched its own MPI library

Performance analysis tools, debuggers

Intel TBB — adding parallelism to C++

Intel's Ct technology — nested data parallelism for C++
Intel Parallel Studio — an all in all support toolbox

Higher-level models:
— Intel Concurrent Collections for C++
— Intel Cilk++ Software Development Kit

Intel's Parallel Studio

(inteD * Microsoft Visual Studio C/C++
developers toolbox

Intel’

| * interoperable with OpenMP and
Parallel intel's TBB libraries

* helps the programmer throughout
the parallelization process (to
identify, create, debug and tune)

A D
U O(rId

Others

Java: Java threads, java.util.concurrent package

Microsoft .NET: Task Parallel Library (TPL)

Haskell: thread programming and data parallelism

etc...

A D
U O(rId

Programming GPGPU

* NVIDIA's CUDA model:

* Gives access to the enormous computing power of NVIDIA
GPUs via standards like OpenCL, C/C++, Fortran,
Python, .NET

* OpenCL — generally adopted by other GPU vendors (e.g. AMD)

OpenCL (Open Computing Language)

* a new open standard for programming heterogenous systems
suported by most hardware vendors

* uniform programming environment to write efficient, portable
code for both multicore CPUs and GPUs

A D
U O(rId

http://www.khronos.org/opencl/

Summary

Multicores (hardware)
— are reality
— are overwhelming
— many, more complex, more heterogeneous to appear

Multicores (software)
— writing parallel code is challenging (always has been)
— programming models are versatile and confusing
— portability across various platforms major issue

Unified high-level parallel programming model is still open

research

Staying Tuned?

http://software.intel.com/en-us/parallel/
http://www.upcrc.illinois.edu/
http://www.multicoreinfo.com/
http://www.drdobbs.com/go-parallel

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39

