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At the beginnings...

1965:
‘the number of transistors
placed inexpensively on
integrated circuit will double
approximately every two years *“

Gordon E. Moore * |nnocent observation led to
Co-founder and Chairman Emeritus of Intel an industry goal: Moore's LaW
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Moore's Law illustrated on Intel chips
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Multicore Architectures

A processing system with 2 or more independent cores
iIntegrated on the same chip

Number and type of cores:
—  multicore or manycore
—  heterogeneous or homogeneous

Memory architecture:
—  shared
—  distributed
—  mixture

Interconnection network




Shared Memory Multicore Architectures

A D
U O(rId




Distributed Memory Multicore Architectures

A D
U O(rId




(Future) Manycore Architectures




The “Babel” of Multicores
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Intel's Nehalem Architecture

[ ) ) )

e shared memory

« multi-threading

e upto 8 cores

e 2 threads/core

« private L1 and L2 cache
o 24MB shared L3 cache
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Sun's Niagara 2 Architecture
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Cell BE — Heterogeneous Architecture
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NVIDIA GPUs with CUDA

G80 Thread Computing Pipeline

® Processors execute computing threads
® Alternative operating mode specifically for computing
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Field Programmable Gate Arrays (FPGAS)

o
Ste

Programmable
Interconnects

1/0 Blocks
device with a matrix of reconfigurable gate array logic circuitry

when configured works as a hardware implementation of a software
application

user can create task-specific cores that all run like parallel circuits
inside one FPGA chip

A D
U O(rId




The Challenge of Parallel Thinking
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“Think Parallel or Perish”

2009:

“... the 'not parallel’ era will
appear to be a very primitive
time in the history of
computers when people
look back in a hundred
years...”

113

.. In less than a decade, a

James Reinders programmer who does not
Chief E list — , . '
Inteﬁs SV;?v%zrs Products Division Think Pafa//e/ f/rSt

will not be a programmer”
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Multicore is a Challenge

Primarily in software development

Performance speed up depends on how good is the
multi-threading of the parallel source code

Parallel code ought to be:

— correct

— efficient

— scalable

— future-proof

Portable code across platforms — major issue




Start to Think Parallel

* what hardware do we have?
— multithreaded system architecture
- GPU
— heterogeneous multicore (ex. Cell BE)
- FPGA
— eftc...

* language: what data structures and operations are supported?

* identify parallelism
— embarrassingly parallel?
— functional decomposition: task parallelism
— data decomposition: data parallelism
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Threading Methods

* Explicit threading (rather low level)
— manually write all code responsible for managing threads
that interface to a specific library
* Library-based — best for functional decomposition
— user creates and synchronize threads explicitly
— Ex. Pthreads

* Compiler-based — best for data parallelization
— user annotates code with pragmas
— Ex. OpenMP, TBB




Golden True: Use Abstraction Where Possible

Future-proof applications

Express parallelism, without thinking much about threads/core
management

— Libraries, OpenMP, Intel TBB — good examples for this

Best to avoid raw native threads, like Pthreads

— Native threads and MPI are like the assembly language of
parallelism

Think in tasks, not threads




Load balancing

* keep all threads busy all the time

time
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Fine- or Coarse-grain — Which is Best?

* Depends on algorithm and hardware

aw)

* Fine-grain: good for load-balancing,
but too much communication
overhead

* (Coarse-grain: more opportunity to
increase performance, but not so
good for load-balancing

aw)

¥

[ communication
[ computation
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Lock-based Synchronization

. IS error-prone

. they may cause blocking:

— deadlocks: threads are waiting for each other to release a
resource

— livelocks: threads continuously change their state but not
doing any useful work.

. Lock-free programming: e.g. transactional memory




Exercise: Parallelizing A Baking Process

* We are making a birthday cake:
* Mix ingredients: 20 minutes
* Bake: 30 minutes

* Can we parallelize it?
* How many cooks? | i T
* Each cook has his own spoon? ™Se¢ ™S¢ ™o
* How if | make cup-cakes?




A Note on Performance Gain

* Amdahl's Law: the pessimistic

— A program's serial portion is a practical upper bound on
the performance of its parallel portion

— Baking a cake:

Number of cooks Time Speedup

1

30 + 20 =50 1.0x

— Qverall parallel performance is still limited by the baking

time

* So are massively parallel systems hopeless... ?
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A Second Note on Performance Gain

* (Gustafson's Law: scaled speed-up measurement — the optimistic
— What if we want to bake 7100 cakes?

Number of cooks Time Speedup
1 30 + 20100 = 2030 1.0x

— certain problems have increased performance by increasing the
problem size

— the problem size scales with the number of processors

— speed-up should be measured by scaling the problem size to
the number of processors, not fixing the problem size
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Parallelizing is Difficult

Writing correct, efficient parallel programs has always been
challenging (e.g. HPC)

This applies to multicore programming too

Higher abstraction levels help

“We cannot start from scratch whenever a new multicore
hardware turns up”




Ongoing Research

* Goal: to lift the abstraction level even higher
— To free the user from low level hardware details
— To bridge the gap between programming different types of
multicores and/or HPC facilities
* Many high-level programming models have been proposed:
— Functional approaches: Haskell, SAC, Crystal, etc

— Data parallel languages: NESL, DPH, SAC, Fortran95, Sisal
etc.

— Implicit parallelism: HPF, Id, NESL, Sisal, ZPL
— PGAS model: UPC, Co-Array Fortran, Fortress, Chapel, X10
— efc.
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Languages and Compilers for Multicores

Threading
Building Blocks
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Intel's for Multicore CPUs

Intel Compilers support OpenMP

Intel launched its own MPI library

Performance analysis tools, debuggers

Intel TBB — adding parallelism to C++

Intel's Ct technology — nested data parallelism for C++
Intel Parallel Studio — an all in all support toolbox

Higher-level models:
— Intel Concurrent Collections for C++
— Intel Cilk++ Software Development Kit




Intel's Parallel Studio

(inteD * Microsoft Visual Studio C/C++
developers toolbox

Intel’

| * interoperable with OpenMP and
Parallel intel's TBB libraries

* helps the programmer throughout
the parallelization process (to
identify, create, debug and tune)
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Others

Java: Java threads, java.util.concurrent package

Microsoft .NET: Task Parallel Library (TPL)

Haskell: thread programming and data parallelism

etc...
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Programming GPGPU

* NVIDIA's CUDA model:

* Gives access to the enormous computing power of NVIDIA
GPUs via standards like OpenCL, C/C++, Fortran,
Python, .NET

* OpenCL — generally adopted by other GPU vendors (e.g. AMD)




OpenCL (Open Computing Language)

* a new open standard for programming heterogenous systems
suported by most hardware vendors

* uniform programming environment to write efficient, portable
code for both multicore CPUs and GPUs
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http://www.khronos.org/opencl/

Summary

Multicores (hardware)
— are reality
— are overwhelming
— many, more complex, more heterogeneous to appear

Multicores (software)
— writing parallel code is challenging (always has been)
— programming models are versatile and confusing
— portability across various platforms major issue

Unified high-level parallel programming model is still open

research




Staying Tuned?



http://software.intel.com/en-us/parallel/
http://www.upcrc.illinois.edu/
http://www.multicoreinfo.com/
http://www.drdobbs.com/go-parallel
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