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e Halting Problem
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The Halting Problem

The longer it keeps you waiting
the more you appreciate a termination analysis
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Software Reliability

m Safety Critical Software.
m Avionics (= aviation + electronics)
m Railway systems
m Automotive
m Drone software
m Health care
There are international software safety standards that need to be met.
m Software in business.

m Web services
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Program Verification

Reasoning about software correctness goes back to the early ages of
computer science:

Turing (1949), Floyd (1967), Hoare (1969), Dijkstra (1976)

Prove formally that

m The program terminates
All executions traces are finite (halting problem)
m The program meets a given specification

m For all possible inputs (not just testing some inputs)
m For a property given in some specification language

Both problems are undecidable even for quite simple programming
languages and specification languages.
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Specification language

Hoare logic: Pre/Post specifications
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Specification language

Hoare logic: Pre/Post specifications

Preconditions and Postconditions are written in First-order logic.
For instance:

m0<i<n-1
mVa:1<a<n—1:v[ja—1] <v|[q]
A property (condition) is required to hold in some point of the program

It is the standard specification language for sequential programs.
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Safety and liveness properties

m A safety property states that nothing bad happens

For instance, in a system no ERROR/STOP state is reachable.

m A liveness property states that something good eventually happens

For instance, in a system an action is eventually executed (fairness).

Safety and liveness properties are dual.
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Safety and liveness properties

m A safety property states that nothing bad happens

For instance, in a system no ERROR/STOP state is reachable.
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Approaches to formal verification

m Deductive verification
m Model Checking

m Testing
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Approaches to formal verification

Deductive verification
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Approaches to formal verification

Deductive verification

m Given a system and its specification (and maybe other annotations).
m Mathematical proof obligations (theorems) are generated.
m These theorems are proved using:

m Proof assistants (Isabelle, Coq, etc)
m Theorem provers (Vampire, Spass, etc)
m Satisfiability modulo theories (SMT) solvers (Z3, CVC4, Barcelogic,

etc)
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Approaches to formal verification

Deductive verification

m Given a system and its specification (and maybe other annotations).
m Mathematical proof obligations (theorems) are generated.
m These theorems are proved using:

m Proof assistants (Isabelle, Coq, etc)

m Theorem provers (Vampire, Spass, etc)

m Satisfiability modulo theories (SMT) solvers (Z3, CVC4, Barcelogic,
etc)

Trade-off between automation and both scalability and efficiency.

It also depends on the expressivity of the specification language.

A particular example of this approach is SPARK 2014

Albert Rubio (UPC) Scalable Program Analysis Techniques using [ Bergen, October 2016 9 /37



SPARK 2014

m SPARK is a programming language based on Ada.

m Ada is a general-purpose languages that was designed from the start
(1983) with reliability, safety, and security in mind.

m SPARK is a specialized subset of Ada designed to facilitate the use of
formal methods.

m SPARK is intended for applications that demand safety or security
integrity.
m SPARK 2014 is a subset of Ada 2012

m SPARK 2014 is developed by Altran and AdaCore Companies (started
at the University of Southampton).
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SPARK 2014

Inherits from Ada:

m Powerful type system
m Automatically inserts runtime checks. For instance,
m Array bounds check, Integer overflows, Divisions by zero

m Since Ada 2012, contract-based programming.
Most common: Pre and Post conditions and loop invariants

procedure Increase (X : in out Integer) with
Pre => X <= Max,
-- It is the responsibility of every caller of Increase to check that
-- its argument is less than Max.
Post => X > X’01d;
-- It is the responsibility of Increase’s implementation to ensure that
-- the returned value of X is strictly greater than its initial value.

Does not include from Ada:

m pointers (but addresses are allowed), goto statement, exception
handling, ...
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SPARK 2014

Adds

m supports formal verification as well

m proving safety (or security) properties
m proving the software implementation meets a formal specification

PROGRAMMING
LANGUAGE

HIGH
RELIABILITY

DESIGN VERIFICATION
METHOD TOOLSET
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Overview of the talk

Fully automated software verification
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SPARK 2014 Automation

SPARK 2014 intends to provide automatic verification of safety properties
But it may fail!
Need of loop invariants

Cannot be generated automatically
Weakness: it is not an easy task for developers!

Albert Rubio (UPC) Scalable Program Analysis Techniques using [ Bergen, October 2016 14 / 37



Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.
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Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

m Initiation condition: It holds the first time the location is reached.

m Consecution condition: It is preserved under every cycle back to the
location.
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Invariants

Definition
An invariant of a program at a location is an assertion over the program
variables that remains true whenever the location is reached.

Definition
An invariant is said to be inductive at a program location if:

m Initiation condition: It holds the first time the location is reached.

m Consecution condition: It is preserved under every cycle back to the
location.

Deductive verification tools normally focus on inductive invariants.
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Motivation

Our Main Goal: Build verification tools for programmers that are

m Fully automatic.
m Efficient.

m Scalable.
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Our Main Goal: Build verification tools for programmers that are

m Fully automatic.
m Efficient.
m Scalable.

Strategy: Take advantage of powerful arithmetic constraint solvers.

Max-SMT solvers

Constraint-based Program Analysis techniques

Today’s Goal: Verify safety properties of programs
Challenge: discover (loop) invariants.

How to guide the search?
How to make it scalabe?
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SMT/Max-SMT solving
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SMT solvers

SAT and SMT (Satisfiability modulo theories) solvers gain efficiency by:

m addressing only (expressive enough) decidable fragments of a certain
logic
m incorporate domain-specific reasoning, e.g:

m arithmetic reasoning
m equality
m data structures (arrays, lists, stacks, ...)

m SAT: use propositional logic as the formalization language

+ high degree of efficiency
- expressive (all NP-complete) but involved encodings

m SMT: propositional logic + domain-specific reasoning

+ improves the expressivity
- certain (but acceptable) loss of efficiency
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Need and Applications of SMT

m Some problems, like software verification, need reasoning about
equality, arithmetic, data structures, ...

m Example ( Equality with Uninterpreted Functions — EUF ):
gla)=c A (f(g(a)#f(c) v gla)=d) A c#d

m Wide range of applications:

m Deductive verification m Test case generation
m Model checking m Scheduling
...
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Theories of Interest - Arithmetic

m Very useful for obvious reasons

m Restricted fragments support more efficient methods:
m Bounds: x 1 k with e {<, >, <, > =}
m Difference logic: x — y 1 k, with e {<,>,<, >, =}
m Linear arithmetic, e.g: 2x — 3y +4z <5
m Non-linear arithmetic, e.g: 2xy + 4xz?> — 5y < 10

m Variables are either reals or integers
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SMT solving

We make extensive use of SMT solvers inside our program analysis tools.
Input: Given a boolean formula ¢ over some theory T.

Question: Is there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.
(CH+y2>2V x-z<yVy z<zZ) A(x>y VvV 0<z)

{x=0,y=1 2z=1}
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SMT solving

We make extensive use of SMT solvers inside our program analysis tools.
Input: Given a boolean formula ¢ over some theory T.
Question: |s there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.
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Non-linear arithmetic decidability:
m Integers: undecidable (Hilbert's 10th problem).
m Reals: decidable (Tarski) but algorithms have prohibitive complexity.
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SMT solving

We make extensive use of SMT solvers inside our program analysis tools.
Input: Given a boolean formula ¢ over some theory T.
Question: |s there asolution that satisfies the formula?

Example: T = non-linear (polynomial) integer/real arithmetic.
(XP+y’>2Vx-z<yVy-z<zZ’)A(x>y V 0<z)

{x=0,y=1 2z=1}

m Need to handle large formulas with non-linear arithmetic and complex
boolean structure.

m Barcelogic has shown to be the best SMT-solver proving satisfiability
of this kind of problems.
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Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ¢ = G A ... A Cp,, where some of the
conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(P+y?>2Vx-z<yVyz<Z2)A(x>y VO0<zV wb)A...
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Optimization problems

(Weighted) Max-SMT problem

Input: Given an SMT formula ¢ = G A ... A Cp,, where some of the
conditions are hard and the others soft with a weight.

Output: An assignment for the hard clauses that minimizes the sum of
the weights of the falsified soft clauses.

(P+y?>2Vx-z<yVyz<Z2)A(x>y VO0<zV wb)A...

Barcelogic can handle Max-SMT formulas as well.

22 / 37
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Overview of the talk

Invariant generation
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Invariant generation

Definition (Recall)
An invariant is said to be inductive at a program location if:

m Initiation condition: It holds the first time the location is reached.

m Consecution condition: It is preserved under every cycle back to the
location.
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Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS'03].

Assume input programs consist of linear expressions.
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Assume input programs consist of linear expressions.

Keys:

m Use a template for candidate invariants.

axi+...+cxp+d <0
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Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS'03].

Assume input programs consist of linear expressions.
Keys:
m Use a template for candidate invariants.
axi+...+cpxn+d <0

m Impose initiation and consecution conditions obtaining an 3V problem
over non-linear arithmetic.
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Constraint-based invariant generation

We inspire ourselves with the constraint-based method [CSS'03].
Assume input programs consist of linear expressions.

Keys:
m Use a template for candidate invariants.

axi+...+cxp+d <0

m Impose initiation and consecution conditions obtaining an 3V problem
over non-linear arithmetic.

m Transform it using Farkas’ Lemma into an 3 problem over non-linear
arithmetic.

Bergen, October 2016 25 /37
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sqrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: clat+os+at+d<0
while (s < N) {
a=a+ 1;
s=s+ t+ 2
t=1t+ 2;
}

return a;
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sqrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: clat+os+at+d<0
while (s < N) {
a=a+ 1;
s=s+ t+ 2

t=1t+ 2;
}
return a;
}
dca, @, c,d Va, s, t
true=—=c1-0+c-1+c-1+4d<0 A Initiation condition

s<NAca-a+ao s+a-t+d<0=c-(a+1)+a-(s+t+2)+ca-(t+2)+d<0

consecution condition
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sqrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: clat+os+at+d<0
while (s < N) {
a=a+ 1;
s=s+ t+ 2
t=1t+ 2;
}
return a;

dca, @, c,d Va, s, t
o+a+d<0 A Initiation condition
N————

s<NAc-a+ao s+a-t+d<0=c-ata -s+(a+ta) t+a+2c0+2a+d<0

consecution condition
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sgrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: clat+os+at+d<0
while (s < N) {
a=a+ 1;
s=s+ t+ 2
t=1+ 2;
}
return a;

}

Apply Farkas' Lemma to remove V a, s, t

Use Barcelogic to solve the non-linear SMT problem!
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sqrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: clat+os+at+d<0
while (s < N) {
a=a+ 1;
s=s+ t+ 2
t=1t+ 2;
}

return a;

{C1:—2,C2:0,C3:1,d:—1}
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int a =0, s=1, t = 1;
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Scalar invariant generation: Example

Square root of a natural number N:

int 4sqrt(int N) { //integer square root
int a =0, s=1, t = 1;
// Inv: t<2a-+1
while (s < M) {
a=a+ 1;
s=s+ t+ 2
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}
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Overview of the talk

Compositional safety verification
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Safety verification

Aim: verify assertions in large programs (several consecutive loops).
New approach: Goal oriented. Starts from the postcondition.

Automatically generate intermediate assertions!!

Simple example:

while (5>0) {

while (2>0) {
T=x+5;
e

+

assert(z>0);
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Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

while (5>0) {

assert(x + 5%i >=0);
while (2>0) {

T=x+5;

175
+

assert (x>=0);
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Safety verification

Aim: verify assertions in large programs (several consecutive loops).

New approach: Goal oriented. Starts from the postcondition.
Automatically generate intermediate assertions!!

Simple example:

assert(j>=0 and x + bx(i+j) >=0);
while (5>0) {

assert(x + 5%i >=0);
while (2>0) {
z=xt+5;
=)
}
assert(z>0);
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

m Consecution condition holds.
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

m Consecution condition holds.

m but Initiation condition may not hold.
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

m Consecution condition holds. Hard

m but Initiation condition may not hold.
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Conditional invariant generation

Definition
A formula is a conditional (inductive) invariant at a program location if:

m Consecution condition holds. Hard

m but Initiation condition may not hold. Soft

Key: We prefer invariants but we can live with conditional invariants
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Conditional invariant generation

Altogether we have:

m Initiation codition (soft)

m Consecution condition (hard)
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Conditional invariant generation

Altogether we have:

m Initiation codition (soft)
m Consecution condition (hard)

m Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver
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Conditional invariant generation

Altogether we have:

m Initiation codition (soft)
m Consecution condition (hard)

m Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation condition holds we are done
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Conditional invariant generation

Altogether we have:

m Initiation codition (soft)
m Consecution condition (hard)

m Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation does not hold we have a new Postcondition for previous code
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Conditional invariant generation

Altogether we have:

m Initiation codition (soft)
m Consecution condition (hard)

m Plus implication of the Postcondition (hard)

Solve the problem with a Max-SMT solver

If initiation does not hold we have a new Postcondition for previous code

call recursively to the safety checker
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Safety verification: Recovering from failures

In case of failure of the recursive call to the safety checker

m Add the negation of the conditional invariant in the corresponding
locations

m Try to prove the Postcondition again (with more information).
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Overview of the talk

@ VeryMax Tool
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VeryMax global architecture

Our techniques have been implemented in a tool called VeryMax

CONDITIONAL
INVARIANT
+

SAFETY REACHABILITY
CHECK CHECK

RANKING
- LLVM CODE - ’ “ FUNCTION
TRANSFORMATION GENERATOR
NON
GG ‘ TERMINATION TERMINATION
ANALISYS ANALISYS

Two phases

Front-end. From source programs to VeryMax Transition Systems

Static Analysis Tools
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VeryMax static analysis tools

SAFETY REACHABILITY CONDITIONAL

INVARIANT

CHECK CHECK +

RANKING

- FUNCTION
GENERATOR

NON
TERMINATION TERMINATION
ANALISYS ANALISYS
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VeryMax static analysis tools

CONDITIONAL

INVARIANT
CHECK CHECK +

RANKING

- FUNCTION

GENERATOR

NON
TERMINATION TERMINATION
ANALISYS ANALISYS

SAFETY REACHABILITY

VeryMax can
check safety properties
check reachability properties
prove termination

prove non-termination
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Overview of the talk

Conclusions and current work
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Conclusions

Two main conclusions:

m Using SMT and Max-SMT, automatic generation of needed
(conditional) invariants can be made efficiently.

m Scalable program verification becomes feasible

Future developments:

m Reasoning with data structures

m Resource analysis
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Thank you!
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